Math 5C Discussion Problems 1

Line Integrals

1. For each of the following, compute $\int_{C} f d s$.
(a) $f(x, y)=2 x-y, C$ parametrized by $\mathbf{r}(t)=\left(e^{t}+1, e^{t}-2\right), 0 \leq t \leq \ln 2$
(b) $f(x, y)=x y, C$ parametrized by $\mathbf{r}(t)=(2 \cos t, 3 \sin t, 5 t), 0 \leq t \leq \pi / 2$
(c) $f(x, y)=1, C$ is the first-quadrant portion of the curve $x^{2 / 3}+y^{2 / 3}=1$
(d) $f(x, y, z)=y-z^{2}, C$ is parametrized by $\mathbf{r}(t)=\left(t^{2}, \ln t, 2 t\right), 1 \leq t \leq 4$
(e) $f(x, y, z)=x y, C$ is the straight-line path from $(0,0)$ to $(1,1)$ followed by the straight-line path from $(1,1)$ to $(2,3)$
(f) $f(x, y, z)=(x+y+z) /\left(x^{2}+y^{2}+z^{2}\right), C$ is the straight-line path from $(1,1,1)$ to $(2,2,2)$
2. Let C be the circle of radius 4 centered at the origin in \mathbb{R}^{2}. Without integrating, evaluate

$$
\int_{C} \exp \left(x^{2}+y^{2}\right) d s
$$

3. For each of the following, compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(a) $\mathbf{F}=\left(y^{2},-x^{2}\right), C$ is the part of the parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$
(b) $\mathbf{F}=\left(2 x y, e^{y}\right), C$ is parametrized by $\mathbf{r}(t)=4 t^{3}, t^{2}, 0 \leq t \leq 1$
(c) $\mathbf{F}=(x y, y z, x z), C$ is parametrized by $\mathbf{r}(t)=\left(\sin t \cos t, t^{2}\right), 0 \leq t \leq \pi / 2$
4. Let C be an oriented smooth curve in \mathbb{R}^{3}. Let \mathbf{T} be the unit tangent vector of C (in the direction of the orientation) and \mathbf{N} be the unit normal vector of C. Evaluate

$$
\int_{C} \mathbf{T} \cdot d \mathbf{r} \quad \text { and } \quad \int_{C} \mathbf{N} \cdot d \mathbf{r}
$$

5. Evaluate $\int_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}$, where C is the circle $x^{2}+y^{2}=1$, oreinted counterclockwise.
6. Evaluate $\int_{C} x y d x+x^{2} d y$, where C is the striaght-line path from $(0,0)$ to $(1,1)$.
7. Rewrite $\int_{C} e^{y} d x+\sin (x y) d y$ in the form $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
8. Let C be the straight-line path from $(1,1,1)$ to $(1,2,4)$. Compute

$$
\int_{C} 2 x y z d x+x^{2} z d y+x^{2} y d z
$$

9. Let C be the series of straight-line paths from $(1,0,0)$ to $(0,1,0)$ to $(0,0,1)$. Compute

$$
\int_{C} z d x+x d y+y d z
$$

Double Integrals

1. Evaluate the following integrals.
(a) $\int_{0}^{1} \int_{0}^{x} \cos \left(x^{2}\right) d y d x$
(b) $\int_{1}^{2} \int_{0}^{y / 2} x \sqrt{x^{2}+y^{2}} d x d y$
2. For each of the following, evaluate $\iint_{R} f d A$.
(a) $f(x, y)=x y, R=[0,1] \times[1,2]$
(b) $f(x, y)=x^{-2 / 3}, R$ is the region bounded by $y=x^{2}$ and $y=4-x^{2}$
(c) $f(x, y)=\ln (x y), R$ is the trianglular region bounded by $x=0, y=1$, and $y=x$
3. Evaluate the following integrals. Consider interchanging the order of integration.
(a) $\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y$
(b) $\int_{0}^{1} \int_{y^{1 / 3}}^{1} e^{x^{4}} d x d y$
(c) $\int_{0}^{3} \int_{x^{2}}^{9} x \cos \left(2 y^{2}\right) d y d x$
4. Suppose that $\int_{0}^{1} f(x) d x=A$ and $\int_{0}^{1} g(y) d y=B$. What is $\iint_{[0,1]^{2}} f(x) g(y) d A$?
5. Let D be the unit disk in \mathbb{R}^{2} centered at the origin. What is $\iint_{D} 4 d A$?
6. Let R be the parallelogram in \mathbb{R}^{2} with vertices $(0,0),(2,2),(1,0),(3,2)$. What is $\iint_{D}-2 d A$?
7. For each of the following, evaluate the integral. Consider polar coordinates.
(a) $\iint_{D} \frac{1}{\sqrt{x^{2}+y^{2}}} d A$, where D is the unit disk centered at the origin
(b) $\iint_{D}\left(x^{2}+y^{2}\right)^{3 / 4} d A$, where D is the disk centered at the origin with radius 4
(c) $\iint_{D} \frac{\sqrt{x^{2}+y^{2}}}{x^{2}} d A$, where D is the top half $(y \geq 0)$ of the unit disk centered at the origin
(d) $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} e^{x^{2}+y^{2}} d y d x$
(e) $\iint_{T} \frac{1}{\sqrt{x^{2}+y^{2}}} d A$, where T is the triangle bounded by $y=0, x=1$, and $y=x$
(f) $\iint_{D}\left(x^{2}+y^{2}\right)^{-1 / 2} d A$, where D is the unit disk centered at $(1,0)$
(g) $\iint_{R} x d A$, where R is the annular region between $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$
8. Consider the integral $\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d A$.
(a) Evaluate the integral.
(b) Use the result to evaluate $\int_{0}^{\infty} e^{-x^{2}} d x$.

Surfaces and Their Integrals

1. For the surface parametrized by

$$
x=\cos v \sin u, \quad y=\sin v \sin u, \quad z=\cos u
$$

with $0 \leq u \leq \pi$ and $0 \leq v \leq 2 \pi$, compute an expression for the unit normal vector in terms of u and v as well as the surface area. Identify the surface.
2. Repeat the previous problem for the parametrization

$$
x=\sin v, \quad y=u, \quad z=\cos v
$$

with $0 \leq v \leq 2 \pi$ and $-1 \leq u \leq 3$.
3. Let D be the unit disk (centered at the origin) in the $u-v$ plane. Find the area of the surface parametrized by

$$
x=u-v, \quad y=u+v, \quad z=u v
$$

where $(u, v) \in D$.
4. Find the area of the surface $z=(2 / 3)\left(x^{3 / 2}+y^{3 / 2}\right)$ which lies above the unit square $[0,1] \times[0,1]$.
5. Let S be the surface with $x^{2}+y^{2} \leq 1$ and $z=x^{2}+y^{2}$.
(a) Find the area of S.
(b) Evaluate $\iint_{S} z d \sigma$.
(c) Evaluate $\iint_{S}(x, y, z) \cdot d \mathbf{A}$.
6. Let S be the sphere of radius R centered at the origin. Without computation:
(a) Evaluate $\iint_{S} d \sigma$.
(b) Evaluate $\iint_{S}\left(x^{2}+y^{2}+z^{2}\right) d \sigma$.
(c) Evaluate $\iint_{S}\left(x^{2}+y^{2}-2 z^{2}\right) d \sigma$.
(d) Evaluate $\iint_{S} x^{2} d \sigma$.
7. Let S be the cylinder $x^{2}+z^{2}=2,0 \leq y \leq 2$. Given $f(x, y, z)=x^{2}+z^{2}$, compute the flux of ∇f out of S.
8. Let R be the solid region $x^{2}+y^{2} \leq 1,0 \leq z \leq 1$. Compute the flux of $\left(1,1, z\left(x^{2}+y^{2}\right)^{2}\right)$ out of R.
9. Let S be the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ with $1 \leq z \leq 2$ and downward-pointing normal vector. Compute

$$
\iint_{S}\left(x^{2}, y^{2}, z^{2}\right) \cdot d \mathbf{A}
$$

10. Let S be the surface in \mathbb{R}^{3} given by $x^{2}+y^{2}=1,0 \leq z \leq 1$, and $x \geq 0$. Assume that S is oriented with normal in the positive x direction. Find the flux of the vector field $\mathbf{F}(x, y, z)=x \mathbf{i}$ across S.
11. Let S be the unit disk $x^{2}+y^{2} \leq 1, z=0$, upwardly oriented.
(a) Without computing, what is the unit normal to S ?
(b) Evaluate $\iint_{S}\left(\arctan (x y), \sqrt{x^{2}+y^{2}}, x y z\right) \cdot d \mathbf{A}$.

Triple Integrals

1. Let R be the region bounded by the planes $x=0, y=0, z=0, x+y=1$, and $z=x+y$.
(a) Find the volume of R.
(b) Evaluate $\iiint_{R} x d V$.
(c) Evaluate $\iiint_{R} z d V$.
2. Rewrite $\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} f(x, y, z) d z d y d x$ in the order $d z d y d x$. Sketch the region.
3. Let R be the pyramid with base vertices $(0,0,0),(1,0,0),(0,1,0),(1,1,0)$ and apex $(0,0,1)$.
(a) Evaluate $\iiint_{R}\left(1-z^{2}\right) d V$.
(b) Evaluate $\iiint_{R}\left(x^{2}+y^{2}\right) d V$.
4. Integrate $\sqrt{x^{2}+y^{2}+z^{2}} e^{-\left(x^{2}+y^{2}+z^{2}\right)}$ over the unit ball centered at the origin.
5. Let R be the region $1 \leq x^{2}+y^{2}+z^{2} \leq 4$.
(a) Evaluate $\iiint_{R} \frac{d V}{\sqrt{x^{2}+y^{2}+z^{2}}}$.
(b) Evaluate $\iiint_{R} x y z d V$.
6. Evaluate $\iiint_{\mathbb{R}^{3}} \frac{d V}{1+\left(x^{2}+y^{2}+z^{2}\right)^{3}}$.
7. Evaluate $\iiint_{\mathbb{R}^{3}} e^{-z^{2}} \frac{\sqrt{x^{2}+y^{2}}}{1+\left(x^{2}+y^{2}\right)^{3 / 2}} d V$.
8. A circular hole of radius 1 is drilled throught the center of a sphere of radius 2 . How much volume remains?
9. Find the volume of the 'ice cream cone' defined by $\sqrt{x^{2}+y^{2}} \leq z$ and $x^{2}+y^{2}+z^{2} \leq 1$.
10. Find the volume of the 'ice cream cone' defined by $\sqrt{x^{2}+y^{2}} \leq z$ and $x^{2}+y^{2}+z^{2} \leq z$.
11. Find the volume of the region $x^{2}+y^{2} \leq 1,0 \leq z \leq \sqrt{x^{2}+y^{2}}$.
12. Integrate x^{2} over the region $0 \leq z \leq 1-\sqrt{x^{2}+y^{2}}$.
13. Let B be the ball of radius R centered at the origin. Without computation, evaluate the following integrals.
(a) $\iiint_{B} 3 d V$
(b) $\iiint_{B} x d V$
(c) $\iiint_{B}\left(1-x^{2}\right) d V$
(d) $\iiint_{B}(y-z) d V$
(e) $\iiint_{B} x y z d V$
