Math 5C Discussion Problems 1

Line Integrals

1. For each of the following, compute $\int_C f \, ds$.

- (a) f(x,y) = 2x y, C parametrized by $\mathbf{r}(t) = (e^t + 1, e^t 2), 0 \le t \le \ln 2$
- (b) f(x,y) = xy, C parametrized by $\mathbf{r}(t) = (2\cos t, 3\sin t, 5t), 0 \le t \le \pi/2$
- (c) f(x,y) = 1, C is the first-quadrant portion of the curve $x^{2/3} + y^{2/3} = 1$
- (d) $f(x, y, z) = y z^2$, C is parametrized by $\mathbf{r}(t) = (t^2, \ln t, 2t), 1 \le t \le 4$
- (e) f(x, y, z) = xy, C is the straight-line path from (0, 0) to (1, 1) followed by the straight-line path from (1, 1) to (2, 3)
- (f) $f(x, y, z) = (x + y + z)/(x^2 + y^2 + z^2)$, C is the straight-line path from (1, 1, 1) to (2, 2, 2)
- 2. Let C be the circle of radius 4 centered at the origin in \mathbb{R}^2 . Without integrating, evaluate

$$\int_C \exp(x^2 + y^2) \, ds.$$

3. For each of the following, compute $\int_C \mathbf{F} \cdot d\mathbf{r}$.

- (a) $\mathbf{F} = (y^2, -x^2), C$ is the part of the parabola $y = x^2$ from (-1, 1) to (1, 1)
- (b) $\mathbf{F} = (2xy, e^y), C$ is parametrized by $\mathbf{r}(t) = 4t^3, t^2, 0 \le t \le 1$
- (c) $\mathbf{F} = (xy, yz, xz), C$ is parametrized by $\mathbf{r}(t) = (\sin t \cos t, t^2), 0 \le t \le \pi/2$
- 4. Let C be an oriented smooth curve in \mathbb{R}^3 . Let **T** be the unit tangent vector of C (in the direction of the orientation) and **N** be the unit normal vector of C. Evaluate

$$\int_C \mathbf{T} \cdot d\mathbf{r} \quad \text{and} \quad \int_C \mathbf{N} \cdot d\mathbf{r}.$$

5. Evaluate $\int_C \frac{-y \, dx + x \, dy}{x^2 + y^2}$, where C is the circle $x^2 + y^2 = 1$, oreinted counterclockwise.

- 6. Evaluate $\int_C xy \, dx + x^2 \, dy$, where C is the stringht-line path from (0,0) to (1,1).
- 7. Rewrite $\int_C e^y dx + \sin(xy) dy$ in the form $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- 8. Let C be the straight-line path from (1,1,1) to (1,2,4). Compute

$$\int_C 2xyz\,dx + x^2z\,dy + x^2y\,dz$$

9. Let C be the series of straight-line paths from (1,0,0) to (0,1,0) to (0,0,1). Compute

$$\int_C z\,dx + x\,dy + y\,dz$$

Double Integrals

1. Evaluate the following integrals.

(a)
$$\int_0^1 \int_0^x \cos(x^2) \, dy \, dx$$

(b) $\int_1^2 \int_0^{y/2} x \sqrt{x^2 + y^2} \, dx \, dy$

2. For each of the following, evaluate $\iint_R f \, dA$.

- (a) $f(x,y) = xy, R = [0,1] \times [1,2]$
- (b) $f(x,y) = x^{-2/3}$, R is the region bounded by $y = x^2$ and $y = 4 x^2$
- (c) $f(x,y) = \ln(xy)$, R is the trianglular region bounded by x = 0, y = 1, and y = x
- 3. Evaluate the following integrals. Consider interchanging the order of integration.

(a)
$$\int_{0}^{1} \int_{y}^{1} e^{x^{2}} dx dy$$

(b) $\int_{0}^{1} \int_{y^{1/3}}^{1} e^{x^{4}} dx dy$
(c) $\int_{0}^{3} \int_{x^{2}}^{9} x \cos(2y^{2}) dy dx$

4. Suppose that
$$\int_{0}^{1} f(x) \, dx = A$$
 and $\int_{0}^{1} g(y) \, dy = B$. What is $\iint_{[0,1]^2} f(x)g(y) \, dA$?

5. Let *D* be the unit disk in \mathbb{R}^2 centered at the origin. What is $\iint_D 4 \, dA$?

- 6. Let R be the parallelogram in \mathbb{R}^2 with vertices (0,0), (2,2), (1,0), (3,2). What is $\iint_D -2 \, dA$?
- 7. For each of the following, evaluate the integral. Consider polar coordinates.
- (a) $\iint_{D} \frac{1}{\sqrt{x^{2} + y^{2}}} dA$, where D is the unit disk centered at the origin (b) $\iint_{D} (x^{2} + y^{2})^{3/4} dA$, where D is the disk centered at the origin with radius 4 (c) $\iint_{D} \frac{\sqrt{x^{2} + y^{2}}}{x^{2}} dA$, where D is the top half $(y \ge 0)$ of the unit disk centered at the origin (d) $\int_{0}^{2} \int_{0}^{\sqrt{4 - x^{2}}} e^{x^{2} + y^{2}} dy dx$ (e) $\iint_{T} \frac{1}{\sqrt{x^{2} + y^{2}}} dA$, where T is the triangle bounded by y = 0, x = 1, and y = x(f) $\iint_{D} (x^{2} + y^{2})^{-1/2} dA$, where D is the unit disk centered at (1,0) (g) $\iint_{R} x dA$, where R is the annular region between $x^{2} + y^{2} = 1$ and $x^{2} + y^{2} = 4$ 8. Consider the integral $\iint_{\mathbb{R}^{2}} e^{-(x^{2} + y^{2})} dA$.
 - (a) Evaluate the integral.

(b) Use the result to evaluate
$$\int_0^\infty e^{-x^2} dx$$
.

Surfaces and Their Integrals

1. For the surface parametrized by

 $x = \cos v \sin u, \qquad y = \sin v \sin u, \qquad z = \cos u$

with $0 \le u \le \pi$ and $0 \le v \le 2\pi$, compute an expression for the unit normal vector in terms of u and v as well as the surface area. Identify the surface.

2. Repeat the previous problem for the parametrization

$$x = \sin v, \qquad y = u, \qquad z = \cos v$$

with $0 \le v \le 2\pi$ and $-1 \le u \le 3$.

3. Let D be the unit disk (centered at the origin) in the u-v plane. Find the area of the surface parametrized by

$$x = u - v,$$
 $y = u + v,$ $z = uv,$

where $(u, v) \in D$.

- 4. Find the area of the surface $z = (2/3)(x^{3/2} + y^{3/2})$ which lies above the unit square $[0, 1] \times [0, 1]$.
- 5. Let S be the surface with $x^2 + y^2 \le 1$ and $z = x^2 + y^2$.
 - (a) Find the area of S.

(b) Evaluate
$$\iint_{S} z \, d\sigma$$
.
(c) Evaluate $\iint_{S} (x, y, z) \cdot d\mathbf{A}$.

- 6. Let S be the sphere of radius R centered at the origin. Without computation:
 - (a) Evaluate $\iint_S d\sigma$. (b) Evaluate $\iint_S (x^2 + y^2 + z^2) d\sigma$. (c) Evaluate $\iint_S (x^2 + y^2 - 2z^2) d\sigma$.
 - (d) Evaluate $\iint_S x^2 \, d\sigma$.
- 7. Let S be the cylinder $x^2 + z^2 = 2$, $0 \le y \le 2$. Given $f(x, y, z) = x^2 + z^2$, compute the flux of ∇f out of S.
- 8. Let R be the solid region $x^2 + y^2 \le 1$, $0 \le z \le 1$. Compute the flux of $(1, 1, z(x^2 + y^2)^2)$ out of R.
- 9. Let S be the portion of the cone $z = \sqrt{x^2 + y^2}$ with $1 \le z \le 2$ and downward-pointing normal vector. Compute

$$\iint_S (x^2, y^2, z^2) \cdot d\mathbf{A}$$

- 10. Let S be the surface in \mathbb{R}^3 given by $x^2 + y^2 = 1$, $0 \le z \le 1$, and $x \ge 0$. Assume that S is oriented with normal in the positive x direction. Find the flux of the vector field $\mathbf{F}(x, y, z) = x\mathbf{i}$ across S.
- 11. Let S be the unit disk $x^2 + y^2 \le 1, z = 0$, upwardly oriented.
 - (a) Without computing, what is the unit normal to S?
 - (b) Evaluate $\iint_{S} (\arctan(xy), \sqrt{x^2 + y^2}, xyz) \cdot d\mathbf{A}.$

Triple Integrals

1. Let R be the region bounded by the planes x = 0, y = 0, z = 0, x + y = 1, and z = x + y.

- (a) Find the volume of R.
- (b) Evaluate $\iiint_R x \, dV$. (c) Evaluate $\iiint_R z \, dV$.

2. Rewrite $\int_0^1 \int_0^x \int_0^y f(x, y, z) dz dy dx$ in the order dz dy dx. Sketch the region.

- 3. Let R be the pyramid with base vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0) and apex (0, 0, 1).
 - (a) Evaluate $\iiint_R (1-z^2) dV$. (b) Evaluate $\iiint_R (x^2+y^2) dV$.

4. Integrate $\sqrt{x^2 + y^2 + z^2}e^{-(x^2 + y^2 + z^2)}$ over the unit ball centered at the origin.

5. Let *R* be the region $1 \le x^2 + y^2 + z^2 \le 4$.

(a) Evaluate
$$\iiint_R \frac{dV}{\sqrt{x^2 + y^2 + z^2}}$$

(b) Evaluate $\iiint_R xyz \, dV$.

6. Evaluate $\iiint_{\mathbb{R}^3} \frac{dV}{1 + (x^2 + y^2 + z^2)^3}$.

7. Evaluate
$$\iiint_{\mathbb{R}^3} e^{-z^2} \frac{\sqrt{x^2 + y^2}}{1 + (x^2 + y^2)^{3/2}} \, dV.$$

8. A circular hole of radius 1 is drilled throught the center of a sphere of radius 2. How much volume remains?

- 9. Find the volume of the 'ice cream cone' defined by $\sqrt{x^2 + y^2} \le z$ and $x^2 + y^2 + z^2 \le 1$.
- 10. Find the volume of the 'ice cream cone' defined by $\sqrt{x^2 + y^2} \le z$ and $x^2 + y^2 + z^2 \le z$.
- 11. Find the volume of the region $x^2 + y^2 \le 1, 0 \le z \le \sqrt{x^2 + y^2}$.
- 12. Integrate x^2 over the region $0 \le z \le 1 \sqrt{x^2 + y^2}$.

13. Let B be the ball of radius R centered at the origin. Without computation, evaluate the following integrals.

(a)
$$\iiint_{B} 3 \, dV$$

(b)
$$\iiint_{B} x \, dV$$

(c)
$$\iiint_{B} (1 - x^{2}) \, dV$$

(d)
$$\iiint_{B} (y - z) \, dV$$

(e)
$$\iiint_{B} xyz \, dV$$